

磁気エネルギー回生スイッチ(MERS)による 放電灯の調光と省エネ

Light Intensity control and energy Saving Using Magnetic Energy Recovery Switch (MERS)

MERSの基本動作(Basic characteristics of MERS)

MERS特徵 / Features of MERS

- 交流回路に直列に接続する要素 Series connected device
- ●簡単な回路構成 Simple configuration
- 小容量のDCキャパシタ Small sized dc-capacitor
- スイッチングロスが少ない Low switching losses
- 簡単な制御 Simple control

可変容量の直列コンデンサとして作用 Variable series compensation device

MERSの出力電圧波形
MERS voltage waveform

進み
Leading Switching phase Lagging

小 見かけのコンデンサ容量 大
Small Effective capacitance
大
Large 外
Small Small bypas

放電灯の調光による省エネ(Energy Saving using MERS)

インバータ方式に比べて

In comparison with high frequency converter

- 小型・簡素な回路構成 Small and simple configuration
- 既存のランプ器具に取り付けるだけ MERS can be attached to existing lamps
- 低周波スイッチングにより低損失 Low loss due to low switching frequency
- 1 つのMERSで複数のランプの調光が可能 One MERS device can control several lamps

調光時のフェーザ図 (phasor diagram)

進みスイッチング位相 α を制御 Control leading switching phase α

蛍光灯への応用(Fluorescent lamp)

■ 某オフィスにて40W×50本(2 kW)の蛍光灯を調光するMERS式調光装置を試験導入しています。 Fluorescent lamp controller using MERS is installed in an office.

HIDランプへの応用(HID lamp)

●水銀灯・ナトリウム灯にも応用可能 MERS can also be applied to mercury and sodium lamps.